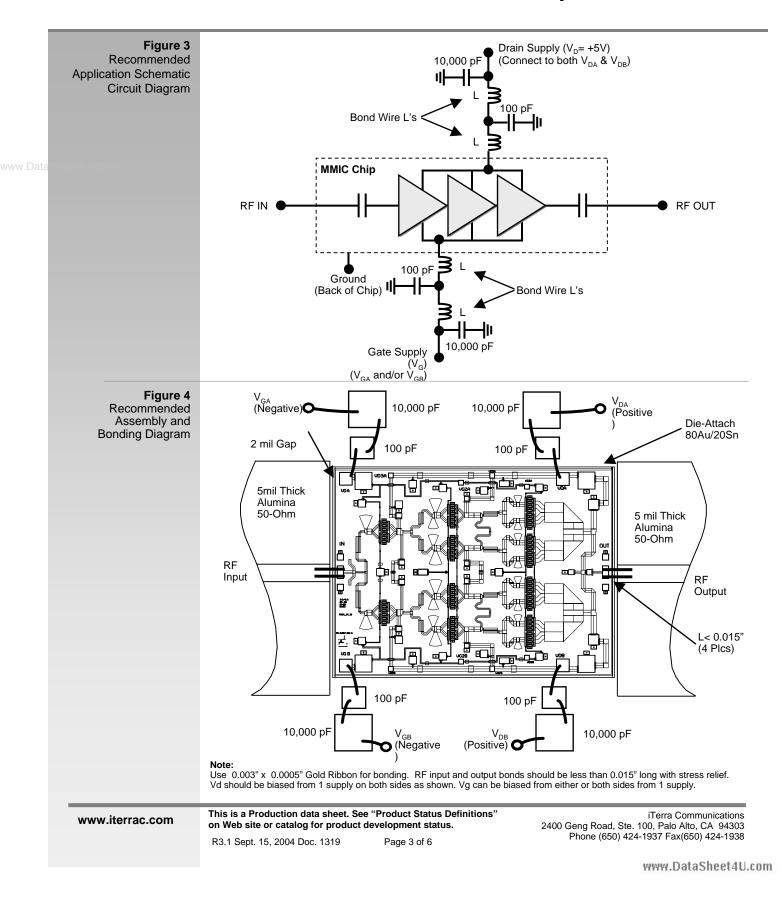


Inditional toomunications, LMIS and other millimeter wave applications, the TR332001 is an ab used in conjunction with other driver or power amplifiers to achieve the required total power output. Features 19 dB small signal gain (typ.) 22 dBm saturated power out (typ.) 21 cmit contains individual source vias 22 hips Size 4.28 mm x 3.19 mm x 50 µm Absolute Ratings 	Description	The iTR39200 is a high (officion		vor a	molifier	designed	for use in point	t to p	oint radi	io no	nint to
 9.3 (2 dbm saturated power of (yp.) Circuit contains individual source vias: Circuit contains individual source vias: Circuit contains individual source vias: Chip Size 4.28 mm x 3.19 mm x 50 µm	·	The iTR39200 is a high efficiency power amplifier designed for use in point to point radio, point to multi-point communications, LMDS and other millimeter wave applications. The iTR39200 is a 3-stage GaAs MMIC amplifier utilizing an advanced 0.15µm gate length Power PHEMT process and can be used in conjunction with other driver or power amplifiers to achieve the required total power output.										
Ratings $Parameter$ SymbolValueUnitPositive DC Voltage (+5 V Typical) Negative DC Voltage (+5 V Typical) Negative DC Current Simultaneous (V ₀ - V ₀) Positive DC Current Storage Temperature Range Thermal Resistance (Channel to Backside) V_{00} $+ 6$ Volts Volts Volts 0 Electrical Characteristics (At 25°C) 50 Ω system, V ₀ =+5 V, Quiescomt current (t ₀₀) = 1600 mA Parameter Min 	Features	 32 dBm saturated power out (typ.) Circuit contains individual source vias 										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										_		
Negative DC Voltage Simultaneous (V0, -V0,) Positive DC Current RF Input Power (from 50 Ω source) Operating Base plate Temperature Storage Temperature Range Thermal Resistance (Channel to Backside) V_0^2 V_{00s} H_8 I_5 <b< th=""><th>Ratings</th><th></th><th></th><th>(</th><th>T :</th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th></b<>	Ratings			(T :		-					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-		гуріса	u)	-					
$\frac{Positive DC Current}{Pit Input Power (from 50 \Omega source)}{Operating Base plate Temperature} Operating Base plate Temperature Range Thermal Resistance (Channel to Backside) \frac{I_0}{P_N} = \frac{2352}{20} + \frac{mA}{dBm} + \frac{mA}{Dm} + \frac{mA}$			-				-					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Positive DC	Current				I _D	2352		mA		
Storage Temperature Range Thermal Resistance (channel to Backside) T_{Seg} $-55 \text{ to } +125$ 8 $^{\circ}$ C/WElectrical Characteristics (At 25°C) 50 Ω system, $V_{D}=+5$ V, Quiescent current (I_{DO}) = 1600 mAParameterMin Typ Max 16Typ Max 40Unit Gei 37ParameterMin Typ Max Vol 40ParameterMin Typ Max Max Vol Gein Small Signal ($I=37-38.5 \text{ GHz}$) ($I=37-38.5 \text{ GHz}$) <br< th=""><th></th><th></th><th>`</th><th></th><th></th><th>Ý </th><th></th><th>-</th><th></th><th></th><th></th><th></th></br<>			`			Ý		-				
Thermal Resistance (Channel to Backside) Sold Rp Sold Bp Sold Bp C/W Electrical Characteristics (At 25°C) 50 Ω system, Vo=+5 V, Quiescent current (I _{DO}) = 1600 mA Parameter Min Typ Max Unit Gate Supply Voltage (Vo/t) Gain Small Signal (I=37.38.5 GHz) 17 19 dB Drain Current at Pin=0 dBm 1600 mr Gate Supply Voltage (Vo/t) Gain Small Signal (I=37.38.5 GHz) 17 19 dB Drain Current at Pin=0 dBm 1600 mr Gain Variation vs. Frequency (Fa3.5-40 GHz) 16 17 dB Drain Current at Pin=0 dBm 1700 mr Power Output (I=37.38.5 GHz) 13 31 dBm Other Added Efficiency (PAE) at PidB 17 9 Old MHz Tone Sep.) (10 MHz Tone Sep.) 37 dE 0 0 0 0 (I=37.38.5 GHz) 31 32 dBm 0 0 0 0 (I=37.38.5 GHz) 31 32 dBm 0 0 0 0 (I=37.38.5 GHz) 31 32 dBm 0 0 0 0 (Pin=0 dBm) 10 d 0 0 0 0 0 (I=37.38.5 GHz) 31 32 dBm 0 0 0 0						re						
$\frac{(Channel to Backside)}{(Channel to Backside)}$ $\frac{Electrical}{Characteristics} (At 25°C) 50 \Omega system, V_p=+6 V, Quiescent current (I_{Do}) = 1600 \text{ mA}} = \frac{Parameter}{1000 \text{ mass}} \frac{Min}{(1=37\cdot38.5 \text{ GHz})} \frac{Trequency Range}{(1=37\cdot38.5 \text{ GHz})} \frac{37}{0.2} \frac{-0.2}{V} V_{Gain Small Signal}}{(1=37\cdot38.5 \text{ GHz})} \frac{17}{19} \frac{19}{04B} \frac{dB}{B} = \frac{1000 \text{ m}}{1000 \text{ m}} \frac{16}{(1=37\cdot38.5 \text{ GHz})} \frac{17}{16} \frac{19}{17} \frac{19}{04B} \frac{dB}{B} = \frac{1000 \text{ m}}{1000 \text{ m}} \frac{1000 \text{ m}}{100000000000000000000000000000000000$					Je		-			-		
Characteristics (At 25°C) 50 Ω system, V _p =+5 V, Quiescent current (I _{DQ}) = 1600 mA Parameter Min Typ Max Or Gais Small Signal (f=37-38.5 GHz) 37 -0.2 V V Drain Current at Plae0 dBm 1600 mr Gain Small Signal (f=37-38.5 GHz) 17 19 dB dB Drain Current at Plae0 dBm 1600 mr Gain Variation vs. Frequency +/-1.5 dB dB 17 9 OIP3 (17 dBm/Tone) (f=37-38.5 GHz) 31 32 dBm OIP3 (17 dBm/Tone) (10 MHz Tone Sep.) 37 dE Power Output at 1 dB Compression (f=37-38.5 GHz) 31 32 dBm OIP3 (17 dBm/Tone) (10 MHz Tone Sep.) 10 d Power Output Saturated (f=37-38.5 GHz) 31 32 dBm Output Return Loss (Pin=0 dBm) 10 d Vint (Habber of the negative gate voltage is -0.5 to 0.0V to set a typical I _{D0} of 1600 mA. 10 d	Electrical			,								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Parameter	Min	Тур	Max	Unit	Paramet	er	Min	Тур	Max	Unit
$v_{D}=+5$ V, Gullescent current $(I_{DO}) = 1600$ mAGain Small Signal (f=37.38.5 GHz)1719dB dB $Gain Small Signal(f=37.38.5 GHz)1719dBGain Variation vs.Frequency+/-1.5dBPower Outputat 1 dB Compression(f=37.38.5 GHz)11Gain Variation vs.Frequency+/-1.5dBPower Outputat 1 dB Compression(f=37.38.5 GHz)31Gain Variation vs.Frequency30Power Outputat 1 dB Compression(f=37.38.5 GHz)31Gain Variation vs.Frequency31Power Output(f=37.38.5 GHz)31Gain Variation vs.(f=37.38.5 GHz)31Gain Variation vs.(f=37.38.5 GHz)31Gain Variation vs.(f=37.38.5 GHz)31Gain Variation vs.(f=37.38.5 GHz)31Gain Variation vs.(f=38.5-40 GHz)30Gain Variation vs.(f=38.5-40 GHz)31Gain Variation vs.(f=37.38.5 GHz)31Gain Variation vs.(f=38.5-40 GHz)31Gain Variation Vs.($	(At 25°C) 50 Ω system,		37		40					1600		mA
(f=37-38.5 GHz) 17 19 dB at P1dB Compression 17/00 m (f=37-38.5 GHz) 16 17 dB Power Added Efficiency 17 9 Gain Variation vs. Frequency +/-1.5 dB 0IP3 (17 dBm/Tone) 17 9 Power Output at 1 dB Compression 11/00 m 17 9 (f=37-38.5 GHz) 31 dBm 0IP3 (17 dBm/Tone) 10 d (f=37-38.5 GHz) 31 dBm 0utput Return Loss 10 d (f=37-38.5 GHz) 31 32 dBm 0utput Return Loss 10 d (f=37-38.5 GHz) 31 32 dBm 0utput Return Loss 10 d (f=37-38.5 GHz) 31 32 dBm 0utput Return Loss 10 d (f=37-38.5 GHz) 31 32 dBm 0utput Return Loss 10 d (f=37-38.5 GHz) 31 32 dBm 0 10 d (f=ar-16 dBm) 30 31 dBm 10 d d <td< th=""><th></th><td></td><td></td><td>-0.2</td><td></td><td>v</td><td>Drain Cu</td><td>rrent</td><td></td><td></td><td></td><td></td></td<>				-0.2		v	Drain Cu	rrent				
(Pin=0 dBm) (Pin=0 dBm) (Pale at P1dB) 17 9 Gain Variation vs. Frequency +/-1.5 dB (IPAE) at P1dB 17 9 Power Output at 1 dB Compression (f=37-38.5 GHz) 31 dBm OIP3 (17 dBm/Tone) (10 MHz Tone Sep.) 37 dE Power Output (f=37-38.5 GHz) 31 dBm dBm 10 d Power Output Saturated (f=37-38.5 GHz) 31 32 dBm 0Utput Return Loss (Pin=0 dBm) 10 d Power Output Saturated (f=38.5-40 GHz) 30 31 dBm 0utput Return Loss (Pin=0 dBm) 10 d Note: 1. Typical range of the negative gate voltage is -0.5 to 0.0V to set a typical I _{DQ} of 1600 mA. 1 1 1		(f=37-38.5 GHz)								1700		mA
Frequency +/-1.5 dB (10 MHz Tone Sep.) 37 dE Power Output at 1 dB Compression (f=37-38.5 GHz) 31 dBm Input Return Loss (Pin=0 dBm) 10 d Power Output Saturated (f=37-38.5 GHz) 31 32 dBm Output Return Loss (Pin=0 dBm) 10 d Image: Comparison of the staturated (f=38.5-40 GHz) 31 32 dBm 0 Uput Return Loss (Pin=0 dBm) 10 d Image: Comparison of the staturated (f=38.5-40 GHz) 31 32 dBm 0 <th></th> <th></th> <th>10</th> <th>17</th> <th></th> <th>uв</th> <th></th> <th></th> <th></th> <th>17</th> <th></th> <th>%</th>			10	17		uв				17		%
at 1 dB Compression (f=37-38.5 GHz) (f=38.5-40 GHz) 31 30 30 30 dBm (f=37-38.5 GHz) (f=38.5-40 GHz) 31 31 32 31 32 dBm dBm 32 dBm dBm (Pin=0 dBm) Output Return Loss (Pin=0 dBm) 10 d d Note: 1. Typical range of the negative gate voltage is -0.5 to 0.0V to set a typical I _{DQ} of 1600 mA.				+/-1.5		dB				37		dBm
(f=37-38.5 GHz) 31 31 dBm (f=38.5-40 GHz) 30 dBm Output Return Loss 10 d Power Output Saturated 31 32 dBm Output Return Loss 10 d (f=37-38.5 GHz) 31 32 dBm dBm Output Return Loss 10 d (f=37-38.5 GHz) 31 32 dBm dBm 0 10 d (f=38.5-40 GHz) 30 31 dBm dBm 0 10 d (Pin=+16 dBm) 30 31 dBm dBm 0 10 d Note: 1. Typical range of the negative gate voltage is -0.5 to 0.0V to set a typical I _{DQ} of 1600 mA.										10		dB
(I=38.5-40 GHZ) 30 dBm (Pin=0 dBm) 10 d Power Output Saturated (f=37-38.5 GHZ) 31 32 dBm (Pin=0 dBm) 10 d (f=38.5-40 GHZ) 30 31 32 dBm (Pin=0 dBm) 10 d (f=38.5-40 GHZ) 30 31 32 dBm (Pin=0 dBm) 10 d (Pin=+16 dBm) 30 31 31 32 dBm (Pin=0 dBm) 10 d Note: 1. Typical range of the negative gate voltage is -0.5 to 0.0V to set a typical I _{DQ} of 1600 mA. 10 10 10 10		(f=37-38.5 GHz)						,				uВ
(f=37-38.5 GHz) 31 32 dBm (f=38.5-40 GHz) 30 31 dBm (Pin=+16 dBm) 30 31 dBm Note: 1. Typical range of the negative gate voltage is -0.5 to 0.0V to set a typical I _{DQ} of 1600 mA.				30		dBm				10		dB
(Pin=+16 dBm) Note: 1. Typical range of the negative gate voltage is -0.5 to 0.0V to set a typical I _{DQ} of 1600 mA.		(f=37-38.5 GHz)										
1. Typical range of the negative gate voltage is -0.5 to 0.0V to set a typical I _{DQ} of 1600 mA.												
			e gate vo	oltage is	-0.5 to	0.0V to s	set a typical I _D	_Q of 1600 mA.				
This is a Production data sheet. See "Product Status Definitions" iTerra Communicati		This is a Droduction data chool	Sec "	Product	Status	Definitie	one"			iTerra C		leoti

www.iterrac.com

This is a Production data sheet. See "Product Status Definitions" on Web site or catalog for product development status.

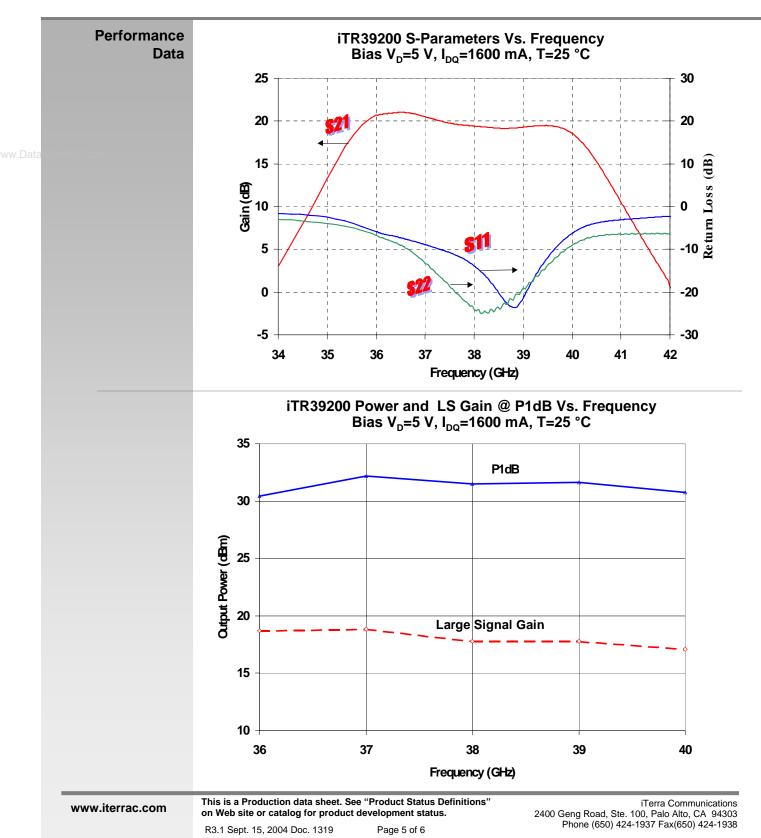
R3.1 Sept. 15, 2004 Doc. 1319


Page 1 of 6

iTerra Communications 2400 Geng Road, Ste. 100, Palo Alto, CA 94303 Phone (650) 424-1937 Fax(650) 424-1938

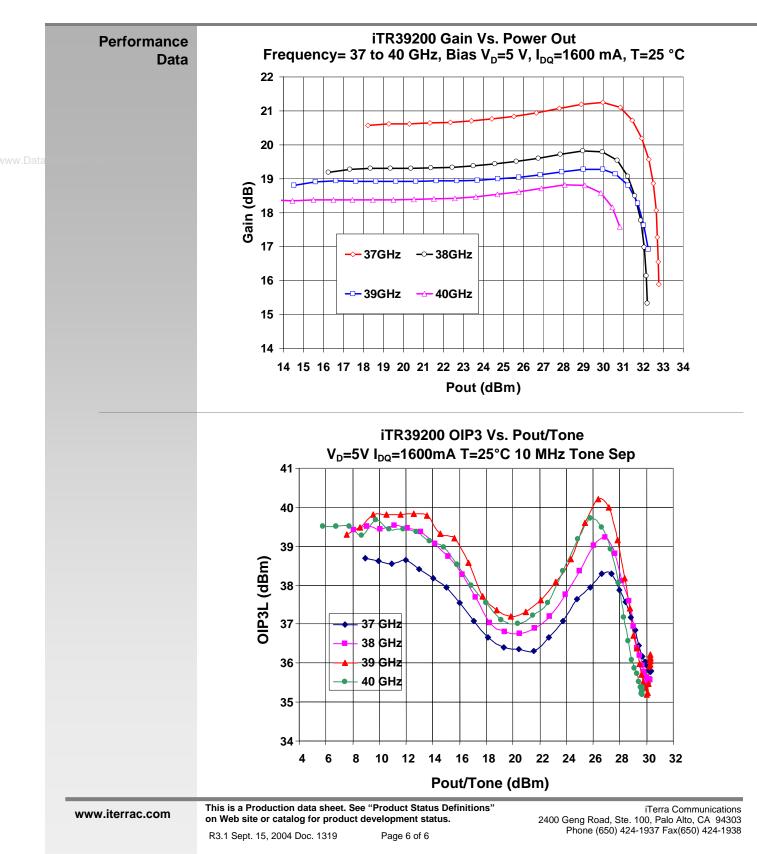
Application Information	 CAUTION: THIS IS AN ESD SENSITIVE DEVICE Chip carrier material should be selected to have GaAs compatible thermal coefficient of expansion and high thermal conductivity such as copper molybdenum or copper tungsten. The chip carrier should be machined, finished flat, plated with gold over nickel and should be capable of withstanding 325°C for 15 minutes. Die attachment for power devices should utilize Gold/Tin (80/20) eutectic alloy solder and should avoid hydrogen environment for PHEMT devices. Note that the backside of the chip is gold plated and is used as RF and DC Ground. These GaAs devices should be handled with care and stored in dry nitrogen environment to prevent contamination of bonding surfaces. These are ESD sensitive devices and should be handled with appropriate precaution including the use of wrist-grounding straps. All die attach and wire/ribbon bond equipment must be well grounded to prevent static discharges through the device. Recommended wire bonding uses 3 mils wide and 0.5 mil thick gold ribbon with lengths as short as practical allowing for appropriate stress relief. The RF input and output bonds should be typically 12 mils long corresponding to a typical 2 mil gap between the chip and the substrate material.
Figure 1 Functional Block Diagram	RF IN Ground (Back of Chip) Gate Supply (V _{DA} V _{DB}) (V _D A V _{DB}) (V _D A V _D) (V _D
Figure 2 Chip Layout and Bond Pad Locations (Chip Size=4.282 mm x 3.194 mm x 50 μm. Back of Chip is RF and DC Ground)	Dimensions in mm
www.iterrac.com	This is a Production data sheet. See "Product Status Definitions"iTerra Communicationson Web site or catalog for product development status.2400 Geng Road, Ste. 100, Palo Alto, CA 94303R3.1 Sept. 15, 2004 Doc. 1319Page 2 of 6

iTR39200 37-40 GHz 1.6 Watt Power Amplifier MMIC



Recommended Procedure for Biasing and Operation	 CAUTION: LOSS OF GATE VOLTAGE (V_G) WHILE DRAIN VOLTAGE (V_D) IS PRESENT MAY DAMAGE THE AMPLIFIER CHIP. The following sequence of steps must be followed to properly test the amplifier: Step 1: Turn off RF input power. Step 2: Connect the DC supply grounds to the ground of the chip carrier. Slowly apply negative gate bias supply voltage of -1.5 V to V_G. Step 3: Slowly apply positive drain bias supply voltage of +5 V to V_D. Step 4: Adjust gate bias voltage to set the quiescent current of I_{DQ}=1600 mA. Step 4: Adjust gate bias voltage to set the guiescent current of I_{DQ}=1600 mA.
Application Information Auto-Bias Circuit	Note: An example of an auto bias sequencing circuit to apply negative gate voltage and positive drain voltage for the above procedure is shown below. $+6v \circ \underbrace{D2 D1N6098}_{D1N6098 D3} \underbrace{R1}_{1.0K} \underbrace{C1}_{0.1uF} \underbrace{D1N6098}_{1.0K} \underbrace{C1}_{0.1uF} \underbrace{D1N6098}_{1.0K} \underbrace{C1}_{0.1uF} \underbrace{D1N6098}_{1.0K} \underbrace{C1}_{0.1uF} \underbrace{D1N6098}_{1.0K} \underbrace{C1}_{0.1uF} \underbrace{C1}_{0.1uF} \underbrace{D1N6098}_{1.0K} \underbrace{C1}_{0.1uF} \underbrace{D1N6098}_{1.0K} \underbrace{C1}_{0.1uF} \underbrace{D1N6098}_{1.0K} \underbrace{C1}_{0.1uF} \underbrace{D1N6098}_{1.0K} \underbrace{C1}_{0.1uF} \underbrace{D1N6098}_{1.0K} \underbrace{C2}_{0.47uF} \underbrace{C1}_{0.1uF} \underbrace{D1N6098}_{0.47uF} \underbrace{C1}_{0.1uF} \underbrace{D1N6098}_{0.47uF} \underbrace{D1N6098}_{0.47u$
	$-5v \bigcirc + Adj. For -Vg \\ + Adj. For -Vg \\ + C4 \\ -5v \bigcirc Ori: + 1.80V \\ -5v \bigcirc Ori: + 1.80V \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$

 This is a Production data sheet. See "Product Status Definitions" on Web site or catalog for product development status.


 R3.1 Sept. 15, 2004 Doc. 1319
 Page 4 of 6

www.DataSheet4U.com

